home *** CD-ROM | disk | FTP | other *** search
- Path: mckinley.cit.macalstr.edu!jmorris
- From: jmorris@math.macalstr.edu (Jesse Morris)
- Newsgroups: comp.lang.pascal.borland,comp.lang.pascal.mac,comp.lang.pascal.ansi-iso,comp.lang.pascal.misc,comp.sys.amiga.programmer,comp.graphics.algorithms,comp.os.ms-windows.programmer.graphics,comp.sys.amiga.graphics
- Subject: Re: 3d programming
- Followup-To: comp.lang.pascal.borland,comp.lang.pascal.mac,comp.lang.pascal.ansi-iso,comp.lang.pascal.misc,comp.sys.amiga.programmer,comp.graphics.algorithms,comp.os.ms-windows.programmer.graphics,comp.sys.amiga.graphics
- Date: 16 Feb 1996 22:19:58 GMT
- Organization: Macalester College, St. Paul Mn
- Message-ID: <4g2vue$3s9@mckinley.cit.macalstr.edu>
- References: <4f3od9$2jg@zeus.tcp.co.uk> <jderrick-0502961551360001@slip037.csc.cuhk.hk> <3118310E.52F@psu.edu> <4fiuh2$qrj@fulton.cs.unc.edu> <311E38D7.71BC@psu.edu> <4frlln$lp5@dfw.nkn.net> <Pine.OSF.3.91.960214142740.20349A-100000@curtis.aa.washington.e
- NNTP-Posting-Host: budapest.math.macalstr.edu
- X-Newsreader: TIN [version 1.2 PL2]
-
- schumaker (schumaker@tigger.jvnc.net) wrote:
-
- : >> points do not necessarily make a vector. A vector is a point that *points*
- : >> somewhere
- : >But a point has a magnitude and direction. Point x,y,z has a magnitude
- : >of sqrt(x^2+y^2+z^2) and a direction of ( x i y j z k)/magnitude where
- : >i,j,k are the unit vectors. Remember when you define a point in space you
- : >are referencing it to some reference point.
- : wrong a point is just that a point. the values given a point are completely
- : arbitraray based on your origin I can aurgue that a point at 0,0,0 is the same
- : as a point you call 1,2,3 your reference point does not give a point any
- : magnitude.
-
- In math, a vector is any ordered pair, triple, n-tuple. Find any
- linear algebra book if you don't believe me. I believe that physics
- often assumes these to be a direction & magnitude of the distance from
- the origin (0,0,...,0) (Note that vectors in the mathematical sense are
- NOT by any means limited to two or three dimensional space.) to the point
- that the vector defines. It then refers to these ordered pairs (0,v) of
- points as vectors. (This is very like what physics and other applied
- mathematics does to many other aspects of more generalized math.)
-